Stabilized Continuous and Discontinuous Galerkin Techniques For
نویسندگان
چکیده
We design stabilized methods based on the variational multiscale decomposition of Darcy’s problem. A model for the subscales is designed by using a heuristic Fourier analysis. This model involves a characteristic length scale, that can go from the element size to the diameter of the domain, leading to stabilized methods with different stability and convergence properties. These stabilized methods mimic the different possible functional settings of the continuous problem. The optimal method depends on the velocity and pressure approximation order. They also involve a subgrid projector that can be either the identity (when applied to finite element residuals) or can have an image orthogonal to the finite element space. In particular, we have designed a new stabilized method that allows the use of piecewise constant pressures. We consider a general setting in which velocity and pressure can be approximated by either continuous or discontinuous approximations. All these methods have been analyzed, proving stability and convergence results. In some cases, duality arguments have been used to obtain error bounds in the L-norm.
منابع مشابه
A consistent and stabilized continuous/discontinuous Galerkin method for fourth-order incompressible flow problems
Article history: Received 27 March 2011 Accepted 3 May 2012 Available online 15 May 2012
متن کاملNumerical Investigation of Multiphase Flow in Pipelines
We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism...
متن کاملStabilized Finite Element Methods for Nonsymmetric, Noncoercive, and Ill-Posed Problems. Part II: Hyperbolic Equations
In this paper we consider stabilized finite element methods for hyperbolic transport equations without coercivity. Abstract conditions for the convergence of the methods are introduced and these conditions are shown to hold for three different stabilized methods: the Galerkin least squares method, the continuous interior penalty method, and the discontinuous Galerkin method. We consider both th...
متن کاملAdaptive Finite Element Simulation of Incompressible Flows by Hybrid Continuous-Discontinuous Galerkin Formulations
In this work we design hybrid continuous-discontinuous finite element spaces that permit discontinuities on non-matching element interfaces of non-conforming meshes. Then, we develop an equal-order stabilized finite element formulation for incompressible flows over these hybrid spaces, which combines the element interior stabilization of SUPGtype continuous Galerkin formulations and the jump st...
متن کاملInterior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations
In this paper we present the continuous and discontinuous Galerkin methods in a unified setting for the numerical approximation of the transport dominated advection-reaction equation. Both methods are stabilized by the interior penalty method, more precisely by the jump of the gradient in the continuous case whereas in the discontinuous case the stabilization of the jump of the solution and opt...
متن کامل